Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Res ; 251(Pt 1): 118612, 2024 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-38442814

RESUMO

Landfills, as a source of potentially toxic elements (PTEs), pose a threat to the environment and human health. A literature review was conducted to explore the diversity of arthropods inhabiting solid waste landfills, as well as on the bioaccumulation of PTEs by arthropods. This review presents scientific papers over the last 20 years. Their importance in landfill ecosystems has been the subject of research; however, the issue of the accumulation of compounds such as toxic elements is emphasized only in a few studies. The bioaccumulation of PTEs was studied for 10 arthropod species that founded in landfills: Orthomorpha coarctata and Trigoniulus corallinus (class Diplopoda), Armadillidium vulgare and Trachelipus rathkii (class Malacostraca), the 6 species of the class Insecta - Zonocerus variegatus, Anacanthotermes ochraceus, Macrotermes bellicosus, Austroaeschna inermis, Calathus fuscipes and Harpalus rubripes.

2.
Sci Rep ; 14(1): 6264, 2024 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-38491088

RESUMO

Red clover (Trifolium pratense L.) is a forage legume cultivated worldwide. This plant is capable of establishing a nitrogen-fixing symbiosis with Rhizobium leguminosarum symbiovar trifolii strains. To date, no comparative analysis of the symbiotic properties and heterogeneity of T. pratense microsymbionts derived from two distinct geographic regions has been performed. In this study, the symbiotic properties of strains originating from the subpolar and temperate climate zones in a wide range of temperatures (10-25 °C) have been characterized. Our results indicate that all the studied T. pratense microsymbionts from two geographic regions were highly efficient in host plant nodulation and nitrogen fixation in a wide range of temperatures. However, some differences between the populations and between the strains within the individual population examined were observed. Based on the nodC and nifH sequences, the symbiotic diversity of the strains was estimated. In general, 13 alleles for nodC and for nifH were identified. Moreover, 21 and 61 polymorphic sites in the nodC and nifH sequences were found, respectively, indicating that the latter gene shows higher heterogeneity than the former one. Among the nodC and nifH alleles, three genotypes (I-III) were the most frequent, whereas the other alleles (IV-XIII) proved to be unique for the individual strains. Based on the nodC and nifH allele types, 20 nodC-nifH genotypes were identified. Among them, the most frequent were three genotypes marked as A (6 strains), B (5 strains), and C (3 strains). Type A was exclusively found in the temperate strains, whereas types B and C were identified in the subpolar strains. The remaining 17 genotypes were found in single strains. In conclusion, our data indicate that R. leguminosarum sv. trifolii strains derived from two climatic zones show a high diversity with respect to the symbiotic efficiency and heterogeneity. However, some of the R. leguminosarum sv. trifolii strains exhibit very good symbiotic potential in the wide range of the temperatures tested; hence, they may be used in the future for improvement of legume crop production.


Assuntos
Fabaceae , Rhizobium leguminosarum , Rhizobium , Trifolium , Rhizobium leguminosarum/genética , Simbiose/genética , Fabaceae/genética , Trifolium/genética , Fixação de Nitrogênio , Filogenia , Rhizobium/genética , DNA Bacteriano/genética
3.
PLoS One ; 18(5): e0285611, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37172020

RESUMO

The splash phenomenon and the scale of the surface deformation of post-fire soils in the variants of various hydrophobicity and moisture content were studied. Splash erosion is the result of the impact of a single water drop and was analysed using high-speed cameras, while the surface deformation was parameterized using a structured light scanner. The extremely water-repellent variant (dry_V) showed distinct differences, expressed primarily in the number of ejected particles, which was 2.5 times higher than in the four soils with lower levels of hydrophobicity. It was also observed that as a result of the drop impact onto an extremely hydrophobic soil surface, a form known as liquid marble was created inside the crater. Soil moisture content determined the manner, scale and dynamics of the splash erosion. In the case of wet soils, the phenomenon proceeded up to five times faster, and as a result of the drop impact, a large number of fine particles were ejected, which reached nearly twice the velocities and three times the displacement distances compared to the dry soil group. However, the particles and/or aggregate splashed on the dry samples were larger, which also translated into the formation of craters up to twice as extensive as those in the wet soils.


Assuntos
Solo , Água , Solo/química , Interações Hidrofóbicas e Hidrofílicas , Água/química
4.
J Exp Bot ; 74(17): 5255-5272, 2023 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-37249250

RESUMO

Pistia stratiotes is an aquatic plant with a complex structure that allows it to stay afloat. It grows quickly, and in large numbers becomes an undesirable plant as an invasive species. Describing the dynamics of a water drop splash on P. stratiotes leaves can contribute to increasing knowledge of its behavior and finding alternative methods for eradicating it or using it for the benefit of the environment. The non-wettable surface of P. stratiotes presents a complex structure-simple uniseriate trichomes and also ridges and veins. We analyzed the drop impact on a leaf placed on the water surface and recorded it by high-speed cameras. Based on the recordings, quantitative and qualitative analyses were performed. After impacting the leaf, the water drop spread until it reached its maximum surface area accompanied by the ejection of early droplets in the initial stage. Thereafter, three scenarios of water behavior were observed: (i) drop receding and stabilization; (ii) drop receding and ejection of late droplets formed in the later stage as an effect of elastic deformation of the leaf; and (iii) drop breaking apart and ejection of late droplets. The results indicated that the increasing kinetic energy of the impacting drops expressed by the Weber number and the complex leaf surface have an effect on the course of the splash. The simple uniseriate trichomes of the P. stratiotes leaf and the high energy of the falling drops were responsible for the formation and characteristics of the early droplets. The presence of ridges and veins and the leaf's mechanical response had an impact on the occurrence of late droplets.


Assuntos
Araceae , Interações Hidrofóbicas e Hidrofílicas , Plantas , Folhas de Planta/fisiologia , Água/análise
5.
Sci Rep ; 13(1): 8306, 2023 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-37221262

RESUMO

The breeding of insects generates waste in the form of insect excrement and feed residues. In addition, a specific chitinous waste in the form of insect larvae and pupae exuvia is also left. Recent research tries to manage it, e.g., by producing chitin and chitosan, which are value-added products. The circular economy approach requires testing new, non-standard management methods that can develop products with unique properties. To date, the possibility of biochar production from chitinous waste derived from insects has not been evaluated. Here we show that the puparia of Hermetia illucens are suitable for biochar production, which in turn exhibits original characteristics. We found that the biochars have a high nitrogen level, which is rarely achievable in materials of natural origin without artificial doping. This study presents a detailed chemical and physical characterization of the biochars. Moreover, ecotoxicological analysis has revealed the biochars' stimulation effect on plant root growth and the reproduction of the soil invertebrate Folsomia candida, as well as the lack of a toxic effect on its mortality. This predisposes these novel materials with already built-in stimulating properties to be used in agronomy, for example as a carriers for fertilizers or beneficial bacteria.


Assuntos
Quitosana , Dípteros , Animais , Quitina , Solo
6.
Sci Total Environ ; 871: 162127, 2023 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-36764535

RESUMO

Grassland soils are climate-dependent ecosystems that have a significant greenhouse gas mitigating function through their ability to store large amounts of carbon (C). However, what is often not recognized is that they can also exhibit a high methane (CH4) uptake capacity that could be influenced by future increases in atmospheric carbon dioxide (CO2) concentration and variations in temperature and water availability. While there is a wealth of information on C sequestration in grasslands there is less consensus on how climate change impacts on CH4 uptake or the underlying mechanisms involved. To address this, we assessed existing knowledge on the impact of climate change components on CH4 uptake by grassland soils. Increases in precipitation associated with soils with a high background soil moisture content generally resulted in a reduction in CH4 uptake or even net emissions, while the effect was opposite in soils with a relatively low background moisture content. Initially wet grasslands subject to the combined effects of warming and water deficits may absorb more CH4, mainly due to increased gas diffusivity. However, in the longer-term heat and drought stress may reduce the activity of methanotrophs when the mean soil moisture content is below the optimum for their survival. Enhanced plant productivity and growth under elevated CO2, increased soil moisture and changed nutrient concentrations, can differentially affect methanotrophic activity, which is often reduced by increasing N deposition. Our estimations showed that CH4 uptake in grassland soils can change from -57.7 % to +6.1 % by increased precipitation, from -37.3 % to +85.3 % by elevated temperatures, from +0.87 % to +92.4 % by decreased precipitation, and from -66.7 % to +27.3 % by elevated CO2. In conclusion, the analysis suggests that grasslands under the influence of warming and drought may absorb even more CH4, mainly because of reduced soil water contents and increased gas diffusivity.

7.
Sensors (Basel) ; 22(9)2022 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-35590816

RESUMO

The multiphase splash phenomenon is especially interesting in the context of environmental protection, as it could be a mechanism for transporting various types of pollution. A numerical 3D multiphase transport model was applied to a splash that occurred under the impact of a petrol drop on the water surface. The splash phenomenon in immiscible liquids was simulated using the multiphaseInterFoam solver, i.e., a part of the OpenFOAM computational fluid dynamics software implementing the finite volume method (FVM) for space discretization. Thirteen variants with a variable drop size (3.00-3.60 mm) or drop velocity (3.29-3.44 m/s) were conducted and validated experimentally based on splash images taken by a high-speed camera (2800 fps). Based on the numerical simulation, it was possible to analyse aspects that were difficult or impossible to achieve experimentally due to the limitations of the image analysis method. The aspects included the cavity spread, the jet forming moment, and, notably, the scale of the petroleum contamination spread in the splash effect. The simulations showed that droplets detaching from the crown did not consist of pure water but were mostly a "mixture" of water and petrol or petrol alone. The applied modelling workflow is an efficient way to simulate three-phase splash phenomena.


Assuntos
Hidrodinâmica , Água , Simulação por Computador
8.
PLoS One ; 17(3): e0265546, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35333882

RESUMO

The formation of craters is an important issue in the investigations of the surface of the earth and other planets. The aim of the study was to check whether the different textures of sand beds affect the size and dynamics of the formation of craters and ejection curtain after high-velocity impacts. The experiments were conducted using an aluminium impactor at two impact speeds (~700 and ~1300 m∙s-1) and a sand bed composed of either a broad range of sizes (<2.0 mm) or any of the three fractions obtained from it (<0.5, 0.5-1, 1-2 mm). The diameters, depths, wall slope, and rim heights of the resulting craters were measured. The ejecta curtain was characterized by the inclination angle of walls, base diameter, and expansion velocity. The mass of the transferred material and the depth of the impactor penetration were also determined. Additionally, the results were used to calculate dimensionless parameters commonly considered in crater studies (πV, π2 and α). The texture of the sand most clearly influenced the diameters of the craters, its effect could also be seen in the case of the distance covered by the ejected material. This information appears to be relevant for future research, providing some rationale to help assess in which aspects of the phenomenon the texture may be important.


Assuntos
Planetas , Areia , Planeta Terra
9.
PLoS One ; 17(1): e0262203, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34995324

RESUMO

Soil splash is the first step in the process of water erosion, where impacting raindrops cause the detachment and transport of soil material. One of the factors that strongly influences the magnitude of soil splash is the incline of the surface (slope). The aim of this study was to investigate the effect of the slope on the course of the splash phenomenon caused by single-drop impact (one drop impact per soil sample), with respect to the mass and proportions of the ejected material, taking into account its division into solid and liquid phases i.e. soil and water. The investigation was carried out using three types of soil with different textures, in moistened (pressure head corresponding to -1.0 kPa) and air-dry (-1500 kPa) conditions. The soil samples were on three angles of slope, being 5°, 15°, and 30°, respectively. After a single-drop impact with a diameter of 4.2 mm, the ejected material was collected using a splash cup. The following quantities of splashed material were measured: the total mass, the mass of the solid phase, and the mass of the liquid phase. Additionally, the distribution and proportions (soil/water) of the splashed material were analysed in both the upslope and downslope directions. It was found that: (i) the change of slope had a variable influence on the measured quantities for different soils; (ii) in the case of moistened samples, the measured values were mainly influenced by the texture, while in the dry samples, by the angle of the slope; (iii) with the increase of slope, the splashed material was mostly ejected in the downslope direction (irrespective of moisture conditions); (iv) in the moistened samples, the ejected material consisted mostly of water, while in the dry samples it was soil-this occurred for material ejected both upslope and downslope. The obtained results are important for improving the physical description of the process of splash erosion. A more thorough understanding and better recognition of the mechanisms governing this phenomenon at all stages could contribute to the development of more effective methods for protecting soil against erosion.


Assuntos
Transição de Fase , Chuva , Solo/química , Água/análise , Água/química , Fenômenos Mecânicos , Propriedades de Superfície
10.
Sensors (Basel) ; 23(1)2022 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-36616719

RESUMO

Water erosion is an unfavorable phenomenon causing soil degradation. One of the factors causing water erosion is heavy or prolonged rainfall, the first effect of which is the deformation of the soil surface and the formation of microcraters. This paper presents an overview of research methods allowing the study of microcraters as well as the process of their formation. A tabular summary of work on the measurements of various quantities describing the craters is presented. The said quantities are divided into three groups: (i) static quantities, (ii) dynamic quantities, and (iii) dimensionless parameters. The most important measurement methods used to study crater properties, such as (i) basic manual measurement methods, (ii) photography, (iii) high-speed imaging, (iv) profilometers, (v) 3D surface modelling, and (vi) computed tomography (CT) and its possibilities and limitations are discussed. The main challenges and prospects of research on soil surface deformation are also presented.

11.
Biology (Basel) ; 12(1)2022 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-36671718

RESUMO

Hermetia illucens (Diptera: Stratiomyidae, Linnaeus, 1978), commonly known as the black soldier fly (BSF), is a saprophytic insect, which in recent years has attracted significant attention from both the scientific community and industry. The unrestrained appetite of the larvae, the ability to forage on various organic waste, and the rapid growth and low environmental impact of its breeding has made it one of the insect species bred on an industrial scale, in the hope of producing fodder or other ingredients for various animals. The variety of research related to this insect has shown that feed production is not the only benefit of its use. H. illucens has many features and properties that could be of interest from the point of view of many other industries. Biomass utilization, chitin and chitosan source, biogas, and biodiesel production, entomoremediation, the antimicrobial properties of its peptides, and the fertilizer potential of its wastes, are just some of its potential uses. This review brings together the work of four years of study into H. illucens. It summarizes the current state of knowledge and introduces the characteristics of this insect that may be helpful in managing its breeding, as well as its use in agro-industrial fields. Knowledge gaps and under-studied areas were also highlighted, which could help identify future research directions.

12.
Polymers (Basel) ; 13(20)2021 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-34685267

RESUMO

Looking for new, sustainable ways to utilize plastics is still a very pertinent topic considering the amount of plastics produced in the world. One of the newest and intriguing possibility is the use of insects in biodegradation of plastics, which can be named entomoremediation. The aim of this work was to demonstrate the ability of the insect Tenebrio molitor to biodegrade different, real plastic waste. The types of plastic waste used were: remains of thermal building insulation polystyrene foam (PS), two types of polyurethane (kitchen sponge as PU1 and commercial thermal insulation foam as PU2), and polyethylene foam (PE), which has been used as packaging material. After 58 days, the efficiency of mass reduction for all of the investigated plastics was 46.5%, 41.0%, 53.2%, and 69.7% for PS, PU1, PU2, and PE, respectively (with a dose of 0.0052 g of each plastic per 1 mealworm larvae). Both larvae and imago were active plastic eaters. However, in order to shorten the duration of the experiment and increase the specific consumption rate, the two forms of the insect should not be combined together in one container.

13.
Biology (Basel) ; 10(9)2021 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-34571727

RESUMO

Understanding the functioning of different forest ecosystems is important due to their key role in strategies for climate change mitigation, especially through soil C sequestration. In controlled laboratory conditions, we conducted a preliminary study on six different forest soils (two coniferous, two deciduous, and two mixed sites comprising trees of different ages) collected from the same region. The aim was to explore any differences and assess seasonal changes in soil microbial parameters (basal respiration BR, microbial biomass Cmic, metabolic quotient qCO2, dehydrogenase activity DHA, and Cmic:Corg ratio). Indicator- and forest-specific seasonality was assessed. In addition to litter input, soil parameters (pH, nutrient content, texture and moisture) strongly regulated the analyzed microbial indicators. PCA analysis indicated similarity between mature mixed and deciduous forests. Among annual mean values, high Cmic and DHA with simultaneously low qCO2 suggest that the mature deciduous stand was the most sustainable in microbial activities among the investigated forest soils. Research on the interrelationship between soil parameters and forest types with different tree ages needs to be continued and extended to analyze a greater number of forest and soil types.

14.
Polymers (Basel) ; 13(5)2021 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-33800025

RESUMO

Chitin has become a desirable raw material used in various areas of life. The black soldier fly (Hermetia illucens) can be a source of this substance. In the literature, there are many methods of obtaining chitin but there is no one universal method of isolating it. In this publication, we present various procedures for the isolation of chitin from H. illucens pupal exuviae. The obtained chitin variants were characterized using different techniques (optical and confocal microscopy, FTIR, XRD, EDX, thermogravimetric analysis). The tested chitin isolated with an efficiency of 5.69-7.95% was the α form with a crystallinity degree of 60% and maximum degradation temperature of 392 °C. Furthermore, we characterized the nickel ion biosorption process on chitin and proposed the mechanism of this process to be ion exchange and complexation. There have been no such studies thus far on the isolation of chitin from H. illucens exuviae or on the biosorption of nickel ions on this type of biosorbent. The conducted research can be used to develop the application of chitin as a metal biosorbent that can be obtained with relatively high efficiency and good sorption properties.

15.
Biology (Basel) ; 10(4)2021 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-33923892

RESUMO

Bioaccumulation, expressed as the bioaccumulation factor (BAF), is a phenomenon widely investigated in the natural environment and at laboratory scale. However, the BAF is more suitable for ecological studies, while in small-scale experiments it has limitations, which are discussed in this article. We propose a new indicator, the bioaccumulation index (BAI). The BAI takes into account the initial load of test elements, which are added to the experimental system together with the biomass of the organism. This offers the opportunity to explore the phenomena related to the bioaccumulation and, contrary to the BAF, can also reveal the dilution of element concentration in the organism. The BAF can overestimate bioaccumulation, and in an extremal situation, when the dilution of element concentration during organism growth occurs, the BAF may produce completely opposite results to the BAI. In one of the examples presented in this work (Tschirner and Simon, 2015), the concentration of phosphorous in fly larvae was lower after the experiment than in the younger larvae before the experiment. Because the phosphorous concentration in the feed was low, the BAF indicated a high bioaccumulation of this element (BAF = 14.85). In contrast, the BAI showed element dilution, which is a more realistic situation (BAI = -0.32). By taking more data into account, the BAI seems to be more valid in determining bioaccumulation, especially in the context of entomoremediation research.

16.
Pest Manag Sci ; 77(3): 1109-1114, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32964689

RESUMO

The implementation of precision farming technologies into agricultural practice requires, among other things, precise determination of the extent and intensity of insect infestation in the farmer' fields. Manual insect identification is time-consuming and has low efficiency, especially for large fields. Therefore, scientists and practitioners devote much effort to the automatization of this process. There are two complementary approaches to insect identification: (i) direct, in which the insect (ultimately the species) is determined, and (ii) indirect, in which the damage caused by the insects is monitored and forms the basis on which to formulate the information about insect infestation. A mini-review of both approaches is presented in this work. Additionally, the advantages and disadvantages of each are briefly described. Methods of insect identification are still characterized by relatively small selectivity and efficiency, therefore it is necessary to keep searching for new methods and improve the development of existing ones. The goal of such systems should be to work in real time and be inexpensive to run, enabling widespread use amongst farmers. A possible solution seems to be integrating various techniques (sensor fusion) into a single measurement system. © 2020 Society of Chemical Industry.


Assuntos
Produtos Agrícolas , Insetos , Agricultura , Animais
17.
PeerJ ; 8: e9378, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32775047

RESUMO

BACKGROUND: Humic substances (HS) are compounds with a complicated structure, present in the humus soil layer, water, lake sediments, peat, brown coal and shales. Due to their similar physicochemical properties to DNA, they may have an adverse effect on the subsequent use of the isolated material. The main aim of this research was to examine the effect of HS on DNA isolation depending on the soil type and land use, taking into account the spectroscopic full characteristics of HS fractions. METHODS: The research was conducted on eight types of soil sample. Soils represented the most important Soil Reference Groups for temperate climates: Fluvisols, Regosols, Cambisols, Arenosols, Histosols and Luvisols. Soil samples were also collected from areas diversified in terms of use: arable land, grassland and forest. The extraction of HS fractions was performed using the procedure recommended by the International HS Society. The fractional composition of HS was characterized by UV-Vis and fluorescence methods. Soil DNA is extracted by direct cell lysis in the using a CTAB-based method with a commonly-used commercial soil DNA isolation kit. The basis for assessing the quantity and quality of extracted DNA was the Polymerase chain reaction (PCR) reaction since the analysis of soil DNA often relies on the use of PCR to study soil microorganisms. RESULTS: Based on the results, it can be concluded that in the presence of a high concentration of HS, the isolated DNA was low quality and the additional purification procedure was necessary. Despite the differentiation of the internal structure of HS fractions, the decisive factor in the efficiency of DNA isolation from soil samples was the total carbon content in HS. Reduced DNA yields can significantly constrain PCR detection limits to levels inadequate for metagenomic analysis, especially from humus-rich soils.

18.
PeerJ ; 8: e9325, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32596047

RESUMO

Reduction of the greenhouse effect is primarily associated with the reduction of greenhouse gas (GHG) emissions. Carbon dioxide (CO2) is one of the gases that increases the greenhouse effect - it is responsible for about half of the greenhouse effect. Significant sources of CO2 are wastewater treatment plants (WWTPs) and waste management, with about 3% contribution to global emissions. CO2 is produced mainly in the aerobic stage of wastewater purification and is a consequence of activated sludge activity. Although the roles of activated sludge components in the purification process have been studied quite well, their quantitative contribution to CO2 emissions is still unknown. The emission of CO2 caused by prokaryotes and eukaryotes over the course of a year (taking into account subsequent seasons) in model sequencing batch reactors (SBR) is presented in this study. In this work, for the first time, we aimed to quantify this contribution of eukaryotic organisms to total CO2 emissions during the WWTP process. It is of the order of several or more ppm. The contribution of CO2 produced by different components of activated sludge in WWTPs can improve estimation of the emissions of GHGs in this area of human activity.

19.
Sci Total Environ ; 730: 138921, 2020 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-32388369

RESUMO

Biogas production and microbial community structure were analyzed as an effect of biochar addition to a fermentation sludge containing sugar beet pulp. Positive effects of the treatment including an increase in process efficiency and better biogas quality were noted. The effect of biochar on AD (anaerobic digestion process) microbial communities was investigated after total DNA extraction from biochar-amended fermentation mixtures by PCR amplification of bacterial 16S rRNA gene fragments and Illumina amplicon sequencing. A combination of microbiological and physico-chemical analyses was used to study the mechanism by which biochar influences the process of anaerobic digestion of sugar beep pulp. It was found that the main reason of the changes in biogas production was the reshaping of the microbial communities, in particular enrichment of Bacteroidales and Clostridiales. It was proposed that biochar, in addition to being a conductor for mediating interspecies electron transfer, serves also as a habitat for hydrolytic bacteria. It was elucidated that the main driving force for the preferential colonization of biochar surfaces is its hydrophobicity. The presented research indicates the high potential of biochar to stimulate the methane fermentation process.


Assuntos
Beta vulgaris , Anaerobiose , Biocombustíveis , Reatores Biológicos , Carvão Vegetal , Metano , RNA Ribossômico 16S , Açúcares
20.
Sci Total Environ ; 723: 138125, 2020 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-32222512

RESUMO

A new branch of the insect-based food and feed industry is intensively developing all over the world, the best proof of which is the recent change in legislation at the European level allowing the use of insect protein in the production of feed for aquaculture animals. Previous publications have proven that some heavy metals can be bioaccumulated in fly H. illucens (black soldier fly), even when the insect is raised on optimal feed with an acceptable heavy metal content. The purpose of this study was to determine the bioaccumulation potential of H. illucens in relation to micro- and macroelements, toxic elements and for the first time, selected non-essential elements from optimal feed. Our results showed that bioaccumulation of Ba, Bi, Cu, Fe, Hg, Mg, Mo, Se and Zn occurred in all stages of insect development and in puparia, while bioaccumulation of Al, As, Co, K, Pb and Si was not found. The highest bioaccumulation factors were obtained for Ca and Mn in puparia - 38 and 21 respectively. In addition, Ca, Cd, Ga, Mn, P and S were bioaccumulated only in some developmental stages of the insect. The results are discussed in the context of the safety of feed and food production from H. illucens.


Assuntos
Metais Pesados , Simuliidae , Ração Animal/análise , Animais , Aquicultura , Larva
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...